

Exploration Systems Mission Directorate

Analysis of Alternatives (AQA) Overview

Exploration Transportation Systems Strategic Roadmap Workshop

February 2005

Launch Systems Study Status

- Recently completed several in-house studies related to launch systems:
 - EELV Heavy Lift Cargo Assessment
 - Integrated Launch Systems Study
 - Crew launch options (analyzed 12 systems)
 - Cargo launch options (analyzed 35 systems)
 - Upperstage / Earth Departure Stage commonality (3 classes)
 - Crew / Cargo Launch Vehicle Synergy
 - KSC Launch Infrastructure Assessment
 - Analyzed the ground infrastructure requirements to support exploration missions
- Concept Exploration & Refinement (CE&R) BAA contractors will include launch needs as a part of their assessments

In-House Launch System Study Alternatives Completed

What we have learned so far

Launch Vehicle Study - Integrated assessment

- Several paths exist to evolve from a crew to a heavy lift cargo capability
- "Hybrid" configuration options do not offer advantages over proposed EELV and Shuttle derivatives
- All human-rated launch system concepts assessed show the <u>potential</u> to meet the crew safety of 1/1,000
- DDT&E costs for human-rating or heavy lift capabilities will require significant government investment (costs will be validated via independent assessment)
- Cost effectiveness and reliability of launch system can be optimized by higher flight rates (multiple customers – e.g. NASA, AF, NRO, etc.)
- Clear capability bands identified to support the Analysis of Alternatives
 - 8 15 mT
 - 20 30 mT
 - 40 50 mT
 - 70+ mT

Reduced Set of Launch System Alternatives

Evolutionary Paths

Commercial/DoD EELV Paths

Shuttle-Derived Paths

Background

Purpose:

- Assess options to optimize overall lunar architecture
 - Looking for the sensitivities within the architecture based on Launch Vehicle lift capability
 - Alternatives include launch vehicle options and architectures variations
 - Evaluate each option based on Figures of Merit (FOMs)

Approach:

- **♦** Two-phase process
 - Phase 1:
 - In-house Study efforts mission architectures and launch vehicle concepts
 - Phase 2:
 - Refined In-house data
 - Add CE&R Contractor concepts and Aerospace Corporation Independent Assessment data
 - Assessment of alternative architectures (eg. Commercial and modular)

Approach

Mission Architecture Options

Launch Vehicle Options

Multiple mission architectures assessed against multiple LV options

Figures of Merit

Crew Safety and Mission Success

- Crew Safety Launch phase
- Crew Safety Abort Phase
- Mission success Launch Campaign
- Mission success Critical in-space events

Affordability

- Non-Recurring Cost
- Recurring Cost
- Cost Phasing

Programmatic Risks

- Technology Development risk
- Launch Processing/throughput risk
- Development Schedule risk

Extensibility

- Evolvable to Mars Mission
- National Security Commonality
- Commercial Opportunities

What we have learned so far – Phase 1 AOA

Crew Safety and Mission Success

- All human-rated launch system concepts assessed show the <u>potential</u> to meet the crew safety requirement of 1/1,000
- Large number of in-space events may significantly increase mission risk even with fairly reliable launch systems

Affordability

DDT&E costs for human-rating could require significant government investment

Programmatic Risks

- All options appear to be able to support the Vision major milestones
- Traffic model (quantity and spacing) drives significant manufacturing and launch site infrastructure
- Some launch vehicle options require technology development

Extensibility

- Heavy Lift capabilities are favored for Mars Missions
- Potential Commercial Opportunities exist

Work Ahead

 Continue looking for the sensitivities within various architectures based on Launch Vehicle lift capability

No down-select of Launch Vehicle has been made

- Continue with AOA Phase 2
 - Assess Mixed Fleet LV options and other transportation options
 - Refine cost assessments for ALL scenarios
- **♦** Provide Integrated Assessment
 - Identify Agency-wide synergy
 - Assure compliance with Space Transportation Policy